Journal of Chromatography, 358 (1986) 169–178 Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

CHROM. 18 471

ANALYSIS OF BENZODIAZEPINES

I. CHROMATOGRAPHIC IDENTIFICATION

MARCELLO CHIAROTTI*, NADIA DE GIOVANNI and ANGELO FIORI

Istituto di Medicina Legale e delle Assicurazioni, Università Cattolica del Sacro Cuore, L. go F. Vito 1, 00168 Rome (Italy)

(First received July 15th, 1985; revised manuscript received January 6th, 1986)

SUMMARY

The chromatographic mobilities of nineteen benzodiazepines were determined by thin-layer, gas-liquid, high-resolution gas-liquid and high-performance liquid chromatography. The results were correlated with literature data.

INTRODUCTION

The number and frequency of requests made to toxicologists for analyses of blood and plasma samples for benzodiazepines are increasing dramatically, and therapeutic monitoring and screening of drug addicts are of interest in preventive medicine and forensic science^{1,2}; these substances are also frequently found in judicial exhibits. Therefore, a reliable method for the identification of these compounds in biological samples and confiscated drugs is necessary.

Immunochemical techniques (EMIT and RIA)³, generally employed as screening tests, are able to identify the presence of this class of compounds at microgram levels, but they do not discriminate between different commercial benzodiazepines; moreover quantitative analysis is difficult because the responses of different benzodiazepines and their metabolites towards the antigen-antibody reaction (EMIT-dau) are different⁴. The use of more specific techniques is thus necessary for identifying benzodiazepines and their metabolites accurately for correct pharmacological monitoring and for forensic purposes.

Thin-layer chromatography (TLC) has been proposed^{5,6}, but most workers prefer reliable methods based on gas-liquid chromatography (GLC)⁷⁻¹¹ and high-performance liquid chromatography (HPLC)¹²⁻¹⁶. The latter method is suitable for thermally labile substances such as some benzodiazepines. GLC techniques generally involve hydrolytic steps, owing to the formation of the same benzophenones from several different benzodiazepines^{17,18}, so that the individual parent drugs cannot be readily identified; however, some workers have separated intact benzodiazepines by GLC¹⁹⁻²¹.

Published methods for benzodiazepine analysis have usually involved only two

or three compounds and a few data on the chromatographic behaviour of several benzodiazepines and their benzophenones simultaneously with different techniques have been reported^{15,22-24}.

The purpose of this work was to examine the possibility of screening nineteen benzodiazepines currently available in Italy by different chromatographic techniques (TLC, GLC and HPLC) and to establish the sensitivity limits for each substance.

EXPERIMENTAL

Standards and chemicals

Pure chemical standards of chlordiazepoxide, clonazepam, diazepam, flunitrazepam, lorazepam, nitrazepam, oxazepam and temazepam were obtained from Hoffman-La Roche (Nutley, NJ, U.S.A.). Bromazepam, camazepam, chlordesmethyldiazepam, clobazam, clorazepate, desmethyldiazepam, flurazepam, lormetazepam, medazepam, pinazepam and prazepam were obtained from commercial products by methanol extraction.

Benzophenones were obtained by acid hydrolysis of the parent benzodiazepines according to Berry and Grove²⁵.

Azinphos-methyl{phosphorodithioic acid O,O-dimethyl S-[4-oxo-1,2,3-benzotriazin-3(4H)-yl]methyl ester} was employed as an internal standard (I.S.) in HPLC.

Methylclonazepam, obtained by methylation of clonazepam with diazomethane²⁶ was used as the internal standard for high-resolution capillary gas chromatography (HRGC).

Other chemicals and reagents were of UV grade.

Thin-layer chromatography

Pre-coated silica gel 60 F_{254} fluorescent plates (20 cm \times 20 cm) (Merck) were used.

Five eluents were tested for the analysis of benzodiazepines: (A) benzene-2propanol-30% ammonia solution (85:15:1); (B) ethyl acetate-methanol-30% ammonia solution (85:10:5); (C) toluene-acetone-ethanol-30% ammonia solution (45:45:7:3); (D) chloroform-acetone (90:10); and (E) ethyl acetate-cyclohexane-30% ammonia solution (50:40:0.1).

 R_F values according to Moffat²⁷ were calculated only for eluents D and E, which gave better separations, using diazepam, clonazepam, pinazepam and oxazepam as reference compounds for eluent D and diazepam, lorazepam, pinazepam and bromazepam for eluent E.

Two eluents were also tested for the analysis of benzophenones: (D) Chloroform-acetone (90:10) and (F) benzene-acetic acid (97:3).

After development for 10 cm the plates were observed under UV light and sprayed with Dragendorff and Bratton-Marshall reagents²⁵.

Gas-liquid chromatography

A Carlo Erba Fractovap 4200 gas chromatograph was used. Retention indices $(RI)^{28}$ were calculated in the isothermal mode (240, 260 and 280°C) on three different packed columns ($2/m \times 4 \text{ mm I.D.}$) for benzodiazepine standards: (a) 3% GP 2100

DB on 100–120 mesh Supelcoport; (b) 1% Dexsil 300 on 100–120 mesh Chromosorb W; and (c) 3% SE-30 on 100–120 mesh Chromosorb W.

The injector and flame ionization detector temperatures were set 10°C above the oven temperature. Helium was used as the carrier gas at a flow-rate of 30 ml/min.

High-resolution gas chromatography

A Carlo Erba Fractovap HRGC gas chromatograph equipped with both split-splitless and on-column injectors, flame ionization and electron-capture detectors (10 mCi Ni-63, operated in the pulsed mode) and a temperature programmer was used.

The study of gas chromatographic mobility was performed on three different columns: (a) a 25-m glass capillary column with a 0.4 μ m film of SE-54 stationary phase, using hydrogen as carrier gas at a flow-rate of 3 ml/min, temperature programming (from 100 to 220°C in the ballistic mode, hold for 1 min at 220°C, then heat to 270°C at 7°C/min; finally hold at 270°C for 15 min) and a detector temperature of 300°C; (b) a wide-bore SPB-5 glass capillary column (30 m × 0.75 mm I.D.) with bonded SE-54 stationary phase in the isothermal mode at 220°C using helium as the carrier gas at a flow-rate of 5 ml/min; and (c) wide-bore SPB-1 glass capillary column (30 m × 0.75 mm I.D.) with bonded SE-30 stationary phase, using helium at a flow-rate of 5 ml/min as the carrier gas, temperature programming (hold for 2 min at 200°C, heat to 285°C at 4°C/min, then 10 min in the isothermal mode) and a detector temperature of 300°C.

High-performance liquid chromatography

A Perkin-Elmer 3B liquid chromatograph equipped with LC 75 autocontrol set at 254 nm was employed.

The chromatographic separation of benzodiazepines and benzophenones was performed in the reversed-phase mode using a Perkin-Elmer $3-\mu m$ HS C₁₈ column (7 cm long) in the isocratic mode with two different elution systems:

(a) methanol-water (70:30) at a flow-rate of 0.5 ml/min and

(b) 5 mM phosphate buffer (pH 6)-methanol-acetonitrile (57:17:26) at a flow-rate of 1.5 ml/min.

RESULTS AND DISCUSSION

Thin-layer chromatography

 R_F distributions (means of ten replicate analyses) of all benzodiazepines for the five eluents investigated are shown in Fig. 1.

Of the eluent systems tested, D and E gave the best chromatographic separations.

Tables I and II give mobility data for benzodiazepines (only for the chosen eluents) and for benzophenones (eluents D and F).

Table II gives R_F values with two different detection techniques because some of the compounds show two or three spots detectable with UV light, whereas Bratton-Marshall reagent does not react with all of them (e.g., flunitrazepam and desmethyldiazepam).

The results show that TLC allows the easy identification of benzodiazepines

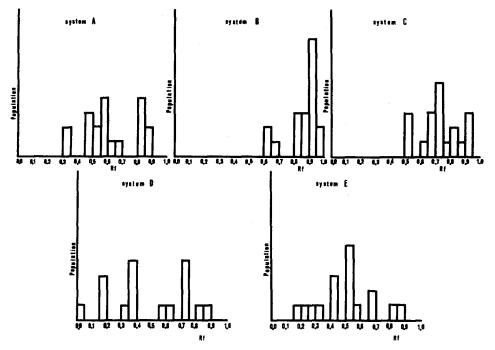


Fig. 1. Frequency distributions of R_F values of nineteen benzodiazepines using eluent systems A, B, C, D and E (see text).

TABLE I

R_F VALUES FOR BENZODIAZEPINES USING ELUENTS D AND E

Detection with Dragendorff reagent and UV light.

Compound	R _F		
	D	E	
Bromazepam	0.20	0.19	
Camazepam	0.75	0.32	
Chlordesmethyldiazepam	0.39	0.51	
Chlordiazepoxide	ND*	ND	
Clobazam	0.72	0.52	
Clonazepam	0.40	0.42	
Clorazepate	0.38	0.55	
Desmethyldiazepam	0.37	0.56	
Diazepam	0.75	0.70	
Flunitrazepam	0.74	0.52	
Flurazepam	0.00	ND	
Lorazepam	0.20	0.25	
Lormetazepam	0.60	0.45	
Medazepam	0.76	0.68	
Nitrazepam	0.35	0.45	
Oxazepam	0.17	0.26	
Pinazepam	0.86	0.89	
Prazepam	0.82	0.83	
Temazepam	0.62	0.53	

* ND = not determined.

TABLE II

Compound	R _F			
	D		F	
	UV light	Bratton-Marshall ^{25*}	UV light	Bratton–Marshall ^{25*}
Bromazepam	··			· · · · · · · · · · · · · · · · · · ·
Camazepam	0.60		0.06	
	0.96		0.25	
			0.87	
Chlordesmethyldiazepam				
Chlordiazepoxide	0.93	0.93 (v)	0.24	0.55 (v)
$\langle \rangle$			0.55	
Clobazam	0.64		0.07	
Clonazepam	0.88	0.88 (p)	0.35	0.35 (p)
	0.91		0.73	0.73 (p)
				0.92 (p)
Clorazepate	0.92	0.92 (v)	0.53	0.53 (v)
Desmethyldiazepam	0.93	0.93 (v)	0.21	0.51 (v)
			0.51	
Diazepam	0.97		0.82	0.53 (v)
Flunitrazepam	0.88	0.88 (p)	0.36	0.36 (p)
	0.95		0.67	
Flurazepam	0.93	0.93 (v)	0.61	0.61 (v)
Lorazepam	0.90	0.94 (v)	0.18	0.69 (v)
	0.94	0.98 (v)	0.69	
Lormetazepam	0.62		0.05	0.05 (v)
	0.96		0.87	
Medazepam	0.88		0.19	0.84 (v)
	0.96		0.24	
			0.84	
			0.97	
Nitrazepam	0.00	0.88 (p)	0.00	0.30 (r)
	0.88		0.30	0.70 (p)
_	0.96		0.70	
Oxazepam	0.93	0.93 (v)	0.20	0.52 (v)
	0.99		0.24	0.90 (v)
			0.52	
			0.90	
Pinazepam	0.96	0.96 (v)	0.85	0.54 (v)
				0.85 (v)
Prazepam	0.75		0.10	0.54 (v)
	0.97		0.91	
Temazepam	0.65		0.06	0.06 (v)
	0.96		0.25	0.53 (v)
			0.85	

R_F VALUES FOR BENZOPHENONES USING ELUENTS D AND F

* p = pink; r = red; v = violet.

with the systems chosen when chromatography of benzophenones is carried out too, notwithstanding its low resolving power compared with GLC and HPLC. In this instance it is possible to discriminate between those groups of compounds not completely resolved with only one chromatographic system (eluent D or E). For example, flunitrazepam and clobazam migrate with similar R_F values in both eluents D and

Compound	This work			Literature data	
	3% GP SP 2100 DB	Dexsil 300	3% SE-30	Ref. 29	Ref. 23
Bromazepam	Neg.*	2893	Neg.	2663	2670
Camazepam	3111	3191	2946	ND	ND
Chlordesmethyldiazepam	ND**	ND	2592	ND	ND
Chlordiazepoxide	2689	2636	2808	2530	2845
Clobazam	2773	2797	2559	ND	2660
Clonazepam	Neg.	3174	Neg.	2885	2965
Clorazepate	2701	2759	Neg.	ND	2655
Desmethyldiazepam	2794	2740	2502	2496	2555
Diazepam	2561	2641	2448	2425	2490
Flunitrazepam	2803	2883	2607	2645	2645
Flurazepam	2841	2960	2790	2785	2800
Lorazepam	ND	2601	2430	2402	2440
Lormetazepam	ND	ND	2491	ND	ND
Medazepam	Neg.	2871	2270	2226	2285
Nitrazepam	Neg.	3111	2746	2750	2830
Oxazepam	2503	2529	2354	2336	2380
Pinazepam	2683	2691	2529	ND	ND
Prazepam	2756	2868	2656	2641	2715
Temazepam	ND	ND	ND	ND	2630

TABLE III GC RETENTION INDICES

* Neg. = no peak between 1200 and 3200. ** ND = not determined.

TABLE IV

HRGC RETENTION INDICES

Compound	Stationary phase			
	SPB-1	SPB-5	SE 54	
Bromazepam	2510	2662	2658	
Camazepam	2935	3036	3059	
Chlordesmethyldiazepam	2552	2647	2700	
Chlordiazepoxide	2703	2882	2855	
Clobazam	2557	2605	2650	
Clonazepam	2814	2879	2945	
Clorazepate	ND*	ND	2588	
Desmethyldiazepam	2426	2549	2591	
Diazepam	2434	2492	2531	
Flunitrazepam	2577	2661	2707	
Flurazepam	2703	2809	2926	
Lorazepam	2391	2466	2484	
Lormetazepam	2603	2717	2753	
Medazepam	ND	2674	ND	
Nitrazepam	2718	2820	2865	
Oxazepam	2314	2386	2436	
Pinazepam	2505	2572	2604	
Prazepam	2619	2685	2712	
Temazepam	2517	2637	2684	

* ND = not determined.

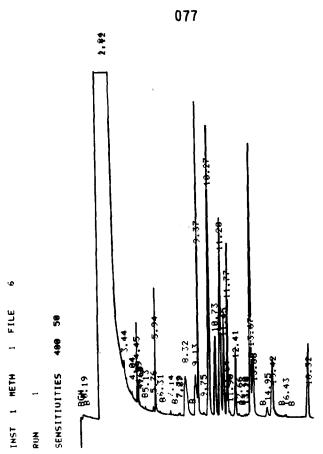


Fig. 2. Gas chromatographic separation of sixteen benzodiazepines on an SE-54 capillary column. Retention times: oxazepam 4.45, lorazepam 5.94, clorazepate 8.32, pinazepam 9.37, clobazam 10.27, bromazepam 10.73, temazepam 11.20, chlordesmethyldiazepam 11.45, flunitrazepam and prazepam 11.77, lormetazepam 12.41, chlordiazepoxide 13.67, nitrazepam 13.88, flurazepam 14.95, clonazepam 15.42 and camazepam 18.32 min.

E, but they give different benzophenones and in this way they can be identified after acid hydrolysis with system D or F.

Moreover, Dragendorff reagent is able to detect all benzodiazepines except lorazepam and clorazepate. Bratton-Marshall reagent gives different coloured spots with all benzophenones except camazepam and clobazam.

TLC analysis can also be used as in inexpensive screening technique when acute intoxication is suspected²⁵.

Gas-liquid and high-resolution gas chromatography

Retention indices (RI) obtained on packed and capillary columns are reported in Tables III and IV.

Table III shows our results and values obtained by Ardrey and Moffat²⁹ and Schuetz and Westenberger²³ using SE-30.

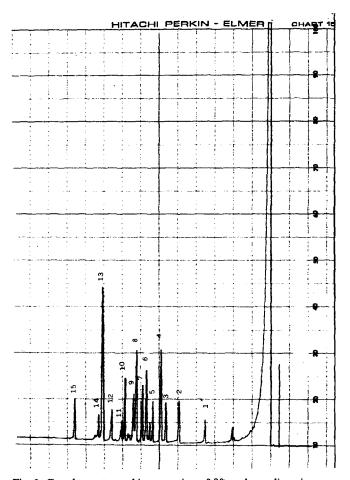


Fig. 3. Gas chromatographic separation of fifteen benzodiazepines on an SPB-1 capillary column. 1 = Oxazepam; 2 = lorazepam; 3 = desmethyldiazepam; 4 = diazepam; 5 = pinazepam; 6 = bromazepam; 7 = temazepam; 8 = chlordesmethyldiazepam; 9 = clobazam; 10 = flunitrazepam; 11 = lormetazepam; 12 = prazepam; 13 = flurazepam; 14 = nitrazepam; 15 = clonazepam.

For several benzodiazepines our results agree with the literature data; however, in some instances a variation more than 50 retention index units between the three sets of data was observed.

Retention indices obtained on the capillary column (SPB-1) were in agreement with those obtained on SE-30 under our analytical conditions. However, the packed column cannot allow the complete separation of all of the standards tested, particularly when using 3% GP and SE-30. The use of Dexsil 300 permits lower analytical temperatures with less pyrolytic destruction of the compounds.

In contrast, using a capillary column a complete separation is obtained and especially with SPB-5 in the isothermal mode the rapid identification of benzodiazepines is possible. The use of temperature programming and the high resolving power of SE-54 and SPB-1 (Figs. 2 and 3) allow a complete separation even when the

TABLE V

HPLC RESULTS OBTAINED USING ELUENTS a AND b

Compound	Relative retention time*		
	a	Ь	
Bromazepam	0.717	0.277	
Camazepam	1.403	1.085	
Chlordesmethyldiazepam	ND**	ND	
Chlordiazepoxide	1.008	0.462	
Clobazam	0.755	0.582	
Clonazepam	0.684	0.406	
Clorazepate	1.032	0.598	
Desmethyldiazepam	1.040	0.589	
Diazepam	1.198	0.879	
Flunitrazepam	0.725	0.510	
Flurazepam	2.050	1.329	
Lorazepam	0.772	0.417	
Lormetazepam	0.902	0.644	
Medazepam	3.104	0.393	
Nitrazepam	0.703	0.380	
Oxazepam	0.802	0.390	
Pinazepam	1.168	1.308	
Prazepam	1.979	2.130	
Temazepam	0.914	0.538	

* Relative to azinphos-methyl.

****** ND = not determined.

retention indices differ by less than 5 units. Moreover, SPB-1 permits complete resolution without tailing peaks for more polar compounds.

Using a capillary column, the detection limit with the flame-ionization detector was about 1-2 ng, whereas with the electron-capture detector 1 ng of each benzo-diazepine gave a nearly full-scale response (>95%) on the 1.0-mV recorder.

Our data confirm the reliability of the use of retention indices especially on a capillary column with temperature programming, because of the good reproducibility (standard deviation) < 2% (five replicate analyses).

High-performance liquid chromatography

Retention time relative to azinphos-methyl are reported in Table V for eluent systems a and b.

Complete separation of the compounds was achieved with eluent a. Nevertheless, with eluent b it is possible to carry out screening using a mixture that is easy to prepare and commonly employed for washing and preserving reversed-phase columns. UV detection allows a detection limit as low as 10 ng, which can be decreased further by shifting the wavelength to 220 nm, but then the background increases when analysing biological extracts.

ACKNOWLEDGEMENT

This study was carried out with financial support from the Italian National Research Council (CNR), Target Project "Preventive Medicine and Rehabilitation", Subproject No. 5.

REFERENCES

- 1 D. J. Greenblatt, M. Divoll, D. R. Abernethy, H. R. Ochs and R. I. Shader, Clin. Pharmacokin., 8 (1983) 233.
- 2 D. J. Greenblatt, M. D. Allen, B. J. Noel and R. I. Shader, Clin. Pharmacol. Ther., 21 (1976) 497.
- 3 H. Koler-Schmidt and G. Bohn, Forensic Sci. Int., 22 (1983) 243.
- 4 R. J. Bastiani, R. C. Phillips, R. S. Schneider and E. F. Ullman, Am. J. Med. Technol., 39 (1973) 211.
- 5 J. M. Clifford and W. F. Smyth, Analyst (London), 99 (1974) 241.
- 6 D. M. Hailey, J. Chromatogr., 98 (1974) 527.
- 7 K. Verebey, D. Jukofsky and S. J. Mule, J. Anal. Toxicol., 6 (1982) 305.
- 8 J. A. F. De Silva, I. Bekersky, C. V. Puglisi, M. A. Brooks and R. E. Weinfeld, Anal. Chem., 48 (1976) 10.
- 9 J. A. F. De Silva and I. Bekersky, J. Chromatogr., 99 (1974) 447.
- 10 M. Divoll and D. J. Greenblatt, J. Chromatogr., 222 (1981) 125.
- 11 R. Jochemsen and D. D. Breimer, J. Chromatogr., 227 (1982) 199.
- 12 R. J. Wong, J. Anal. Toxicol., 8 (1984) 10.
- 13 W. J. Adams, P. A. Bombardt and J. E. Brewer, Anal. Chem., 56 (1984) 1590.
- 14 M. M. A. de Bruyne, A. Sinnema and A. M. A. Verweij, Forensic Sci. Int., 24 (1984) 125.
- 15 G. L. Lensmeyer, C. Rajani and M. A. Evenson, Clin. Chem., 28 (1982) 2274.
- 16 U. R. Tjaden, M. T. H. A. Meeles, C. P. Thys and M. Van Der Kaay, J. Chromatogr., 181 (1980) 227.
- 17 M. D. Osselton, M. D. Hammond and P. J. Twitchett, J. Pharm. Pharmacol., 29 (1977) 460.
- 18 D. M. Hailey, J. Chromatogr., 98 (1974) 527.
- 19 A. G. Howard, G. Nickless and D. M. Hailey, J. Chromatogr., 90 (1974) 325.
- 20 R. Riva, G. Tedeschi, F. Albani and A. Baruzzi, J. Chromatogr., 225 (1981) 219.
- 21 M. Divoli and D. J. Greenblatt, J. Chromatogr., 222 (1981) 125.
- 22 J. D. Wittwer, J. Liq. Chromatogr., 3 (1980) 1713.
- 23 H. Schuetz and V. Westenberger, J. Chromatogr., 169 (1979) 409.
- 24 H. Schütz, Benzodiazepines a Handbook, Springer, Berlin, Heidelberg, New York, 1982.
- 25 D. J. Berry and J. Grove, J. Chromatogr., 80 (1973) 205.
- 26 M. Hasegawa and I. Matsubara, Chem. Pharm. Bull., 23 (1975) 1826.
- 27 A. C. Moffat, J. Chromatogr., 110 (1975) 341.
- 28 E. Kováts, Helv. Chim. Acta, 41 (1958) 1915.
- 29 R. E. Ardrey and A. C. Moffat, J. Chromatogr., 220 (1981) 195.